Nanobatteries or Nanotech Batteries
Nanobatteries are fabricated batteries employing technology at the nanoscale, a scale of minuscule particles that measure less than 100 nanometers or 100x10-9 meters. In comparison, traditional Li-Ion technology uses active materials, such as cobalt-oxide, with particles that range in size between 5 and 20 micrometres. It is hoped that nano-engineering will improve many of the failings of present battery technology, such as re-charging time and battery 'memory'.
Several companies are researching and developing these technologies. In March 2005, Toshiba announced that they had a new Lithium-Ion battery with a nanostructured lattice at the cathode and anode that allowed the battery to recharge a surprising eighty times faster than previously. Prototype models were able to charge to eighty percent capacity in one minute, and one hundred percent recharged after 10 minutes.
When a traditional lithium-ion battery is charged too quickly, it creates a bottleneck in which the lithium moving through electrolyte liquid from the negative electrode to the positive backs up on the surface of the liquid. Under slower charging, the lithium "hides" in void space and does not cause a problem.
"Liquid electrolyte is unstable in the presence of metallic lithium and will cause all sorts of problems. That is why it is imperative to observe the slow-charging rate rule with lithium-ion batteries," Donald Sadoway, MIT professor of materials chemistry and an electrochemistry researcher, explained to TechNewsWorld. Sadoway said the consequences could be as severe as the battery exploding.[...]
Several companies are researching and developing these technologies. In March 2005, Toshiba announced that they had a new Lithium-Ion battery with a nanostructured lattice at the cathode and anode that allowed the battery to recharge a surprising eighty times faster than previously. Prototype models were able to charge to eighty percent capacity in one minute, and one hundred percent recharged after 10 minutes.
When a traditional lithium-ion battery is charged too quickly, it creates a bottleneck in which the lithium moving through electrolyte liquid from the negative electrode to the positive backs up on the surface of the liquid. Under slower charging, the lithium "hides" in void space and does not cause a problem.
"Liquid electrolyte is unstable in the presence of metallic lithium and will cause all sorts of problems. That is why it is imperative to observe the slow-charging rate rule with lithium-ion batteries," Donald Sadoway, MIT professor of materials chemistry and an electrochemistry researcher, explained to TechNewsWorld. Sadoway said the consequences could be as severe as the battery exploding.[...]
Nanotech Batteries For A New Energy Future:Scientists have developed new systems for storing electrical energy derived from alternative sources that are, in some cases, 10 times more efficient than what is commercially available.[...]
0 comments:
Post a Comment