Custom Search

Wednesday, December 17, 2008

A fluorophore, Fluorescein isothiocyanate and fluorescent dyes

A fluorophore, in analogy to a chromophore, is a component of a molecule which causes a molecule to be fluorescent. It is a functional group in a molecule which will absorb energy of a specific wavelength and re-emit energy at a different (but equally specific) wavelength. The amount and wavelength of the emitted energy depend on both the fluorophore and the chemical environment of the fluorophore. This technology has particular importance in the field of biochemistry and protein studies, eg. in immunofluorescence and immunohistochemistry.
Fluorescein isothiocyanate (FITC), a reactive derivative of fluorescein, has been one of the most common fluorophores chemically attached to other, non-fluorescent molecules to create new fluorescent molecules for a variety of applications. Other historically common fluorophores are derivatives of rhodamine (TRITC), coumarin, and cyanine.[2] Newer generations of fluorophores such as the Alexa Fluors and the DyLight Fluors are generally more photostable, brighter, and less pH-sensitive than other standard dyes of comparable excitation and emission.[]

Researchers create new class of fluorescent dyes to detect reactive oxygen species in vivo from PhysOrg.com Researchers have created a new family of fluorescent probes called hydrocyanines that can be used to detect and measure the presence of reactive oxygen species. Reactive oxygen species are highly reactive metabolites of oxygen that have been implicated in a variety of inflammatory diseases, including cancer and atherosclerosis.[...]

0 comments:

About This Blog

News Chemistry

  © Blogger template Newspaper III by Ourblogtemplates.com 2008

Back to TOP